

## LONG WAVE INFRARED DETECTOR

The company designs, develops and manufactures Infrared (IR) detectors at its dedicated facility in Southampton, UK. With a reputation for providing customers with the best in high performance and costeffective technology for IR camera systems, we offer a unique level of expertise.

The Harrier Long Wave Infrared (LWIR) detector is a 640 x 512 Mercury Cadmium Telluride (MCT) Integrated Detector Cooler Assembly (IDCA). The Harrier LWIR detector is designed for very high performance imaging in the 8 -  $10\mu$ m waveband.

Using the MCT process, the Harrier LWIR detector provides the highest environmental integrity along with the superior performance of focal plane detectors.

#### MAIN FEATURES

- Snapshot or interlaced operation
- Simple to use
- Long Wave (LW) 8 10μm
- High electro-optic performance with low crosstalk, automatic anti-blooming at the pixel level and excellent sensitivity
- Windowing gives enhanced frame rates over selected areas of the array
- Highest LW technology performance available in the world
- Longest LW technology DRI ranges
- Reduced stare time, less motion blur than QWIP detectors
- High performance in low scene temperature Key benefits
- Low cost
- High resolution
- High frame rate
- High sensitivity.



# **HARRIER**

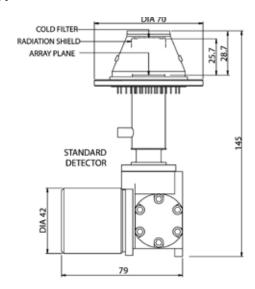




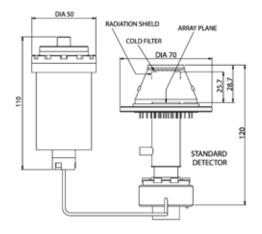
Detector analysis and testing facilities

#### **TECHNICAL SPECIFICATION**

| Format      | Array 640 x 512 pixels |
|-------------|------------------------|
| Pixel Pitch | 24um                   |
| Active Area | 15.36 x 12.29mm        |


| TYPICAL PERFORMANCE |                        |
|---------------------|------------------------|
| NETD (median)       | 17mK (12mK interlaced) |
| Pixel Operability   | >99.5%                 |

| INTERFACE PARAMETERS        |                         |
|-----------------------------|-------------------------|
| Modes                       | Snapshot or interlaced  |
| Configuration Control       | Single serial interface |
| Output Voltage Range        | 2.5V                    |
| Charge Capacity             | 2.5 x 107 electrons     |
| Number of Outputs           | 8                       |
| Pixel Rate                  | Up to 10MHz per output  |
| Intrinsic MUX noise         | 50uV rms                |
| Array Operating Temperature | Up to 90K               |
| Nominal Operating Voltage   | 6V                      |
| Minimum Pins for Operation  | 20                      |
| Number of Input Clocks      | 1                       |
| Window Material             | Germanium               |
| Window Thickness            | 1.73mm                  |
| Cold Filter Material        | Silicon                 |
| Cold Filter Thickness       | 0.4mm                   |


| IDCA                        |                        |  |
|-----------------------------|------------------------|--|
| Weight                      | <750g                  |  |
| Power Consumption           | <10W steady state      |  |
| Cooling Engine              | Rotary Stirling engine |  |
| Operating Temperature Range | -40°C to +70°C         |  |

| LINEAR ENGINE VARIANT       |                        |
|-----------------------------|------------------------|
| Weight                      | 950g                   |
| Power Consumption           | <15W steady state      |
| Cooling Engine              | Linear Stirling engine |
| Operating Temperature Range | -40°C to +70°C         |

### **IDCA**



#### **LINEAR ENGINE VARIANT**



All dimensions in mm



For more information please email infomarketing@leonardocompany.com

Leonardo MW Ltd

First Avenue - Millbrook Industrial Estate - Southampton - Hampshire - SO15 OLG - Tel: +44 (0) 2380 702300
This publication is issued to provide outline information only and is supplied without liability for errors or omissions. No part of it may be reproduced or used unless authorised in writing. We reserve the right to modify or revise all or part of this document without notice.